TuttleOFX
1
|
Data Structures | |
struct | tensor_t |
Structure handling anisotropic gradient parameters. More... | |
class | ImageTensors |
Class used to render tensors. More... | |
Functions | |
template<typename S_VIEW , typename D_VIEW > | |
void | deriche (const S_VIEW &src, D_VIEW &dst, const float sigma, const int order=0, const char axe= 'x', const bool cond=true) |
The Canny-Deriche filter is a recursive algorithm allowing to compute blurred derivatives of order 0,1 or 2 of an image. | |
template<typename S_VIEW , typename D_VIEW > | |
void | dericheFilter (const S_VIEW &src, D_VIEW &dst, const float sigma, int order=0, float threshold=0.0f) |
Use deriche filter amon x and y direction to apply blur. | |
template<typename S_VIEW , typename D_VIEW > | |
D_VIEW & | simple_structure_tensor (const S_VIEW &src, D_VIEW &final_dst, float threshold) |
Apply precise forward/backward finite differences to get a gradient image. | |
template<typename S_VIEW , typename D_VIEW > | |
void | harris (const S_VIEW &src, D_VIEW &dst, float threshold) |
template<typename ViewIt > | |
void | symmetric_eigen (ViewIt &tensorXY, std::vector< double > &val, std::vector< double > &vec) |
Compute the eigenvalues and eigenvectors of a symmetric matrix. | |
const float & | pix2d (const float *W, const int x, const int y, const int c, const int w, const int h, const int nc) |
Return right pixel from unsafe coordinates. | |
template<typename DstView > | |
const float | pix2d (DstView &myView, const int x, const int y, const int c, const int w, const int h) |
Return right pixel from unsafe coordinates. | |
float | linear_pix2d (const float *W, const float fx, const float fy, const int c, const int w, const int h, const int nc) |
Return interpolated pixel. | |
template<typename DstView > | |
float | linear_pix2d (DstView &myView, const float fx, const float fy, const int c, const int w, const int h) |
Return interpolated pixel. | |
template<class S_VIEW , class D_VIEW > | |
D_VIEW & | pseudo_residual (S_VIEW &src, D_VIEW &dst) |
Compute somme pseudo-residuals The pseudo residual r_i of the image Y_i are so thar E[r_i^2] = E[Y_i^2]. This is the 2D pseudo-implementation. | |
template<class S_VIEW , typename t > | |
double | variance_mean (S_VIEW &src, t &mean) |
Return the variance and the mean of the image Least Mean of Square. | |
template<class S_VIEW > | |
double | noise_variance (S_VIEW &src) |
Robustly estimatate the variance of a the noise using the pseudo-residuals. |
void tuttle::imageUtils::deriche | ( | const S_VIEW & | src, |
D_VIEW & | dst, | ||
const float | sigma, | ||
const int | order = 0 , |
||
const char | axe = 'x' , |
||
const bool | cond = true |
||
) |
The Canny-Deriche filter is a recursive algorithm allowing to compute blurred derivatives of order 0,1 or 2 of an image.
[in,out] | src | Source view |
[out] | dst | Destination view |
[in] | sigma | Standard variation of the gaussian distribution |
[in] | order | Derivative order (0 = kind of blur, 1 = kind of blurred edge detection, 2 = kind of very blurred edge detection) |
[in] | axe | Direction of the blur |
[in] | cond | Miscallenous |
Definition at line 37 of file blurFilters.hpp.
References tuttle::plugin::merge::copy_pixels().
Referenced by dericheFilter().
void tuttle::imageUtils::dericheFilter | ( | const S_VIEW & | src, |
D_VIEW & | dst, | ||
const float | sigma, | ||
int | order = 0 , |
||
float | threshold = 0.0f |
||
) |
Use deriche filter amon x and y direction to apply blur.
[in,out] | src | Source view |
[out] | dst | Destination view |
[in] | sigma | Standard variation of the gaussian distribution |
Definition at line 226 of file blurFilters.hpp.
References deriche(), and boost::gil::view().
Referenced by tuttle::imageUtils::ImageTensors< View >::anisotropic_gradient().
void tuttle::imageUtils::harris | ( | const S_VIEW & | src, |
D_VIEW & | dst, | ||
float | threshold | ||
) |
Definition at line 125 of file edgeDetect.hpp.
Referenced by tuttle::imageUtils::ImageTensors< View >::anisotropic_gradient().
float tuttle::imageUtils::linear_pix2d | ( | const float * | W, |
const float | fx, | ||
const float | fy, | ||
const int | c, | ||
const int | w, | ||
const int | h, | ||
const int | nc | ||
) | [inline] |
Return interpolated pixel.
[in] | W | input image (linear buffer, cache optimisation) |
[in] | fx | float abscisse |
[in] | fy | float ordinate |
[in] | c | channel index |
[in] | w | image width |
[in] | h | image height |
[in] | nc | channels number |
Definition at line 67 of file interpolation.hpp.
References pix2d().
float tuttle::imageUtils::linear_pix2d | ( | DstView & | myView, |
const float | fx, | ||
const float | fy, | ||
const int | c, | ||
const int | w, | ||
const int | h | ||
) |
Return interpolated pixel.
[in] | myView | input view |
[in] | fx | float abscisse |
[in] | fy | float ordinate |
[in] | c | channel index |
[in] | w | image width |
[in] | h | image height |
[in] | nc | channels number |
Definition at line 97 of file interpolation.hpp.
References pix2d().
double tuttle::imageUtils::noise_variance | ( | S_VIEW & | src | ) |
Robustly estimatate the variance of a the noise using the pseudo-residuals.
Definition at line 116 of file noiseAnalysis.hpp.
References pseudo_residual(), variance_mean(), and boost::gil::view().
Referenced by tuttle::plugin::nlmDenoiser::NLMDenoiserProcess< View >::computeWeights().
const float& tuttle::imageUtils::pix2d | ( | const float * | W, |
const int | x, | ||
const int | y, | ||
const int | c, | ||
const int | w, | ||
const int | h, | ||
const int | nc | ||
) | [inline] |
Return right pixel from unsafe coordinates.
[in] | W | input image (linear buffer, cache optimisation) |
[in] | x | abscisse |
[in] | y | ordinate |
[in] | c | channel index |
[in] | w | image width |
[in] | h | image height |
[in] | nc | channels number |
Definition at line 28 of file interpolation.hpp.
Referenced by linear_pix2d().
const float tuttle::imageUtils::pix2d | ( | DstView & | myView, |
const int | x, | ||
const int | y, | ||
const int | c, | ||
const int | w, | ||
const int | h | ||
) |
Return right pixel from unsafe coordinates.
[in] | myView | input view |
[in] | x | abscisse |
[in] | y | ordinate |
[in] | c | channel index |
[in] | w | image width |
[in] | h | image height |
[in] | nc | channels number |
Definition at line 48 of file interpolation.hpp.
D_VIEW& tuttle::imageUtils::pseudo_residual | ( | S_VIEW & | src, |
D_VIEW & | dst | ||
) |
Compute somme pseudo-residuals The pseudo residual r_i of the image Y_i are so thar E[r_i^2] = E[Y_i^2]. This is the 2D pseudo-implementation.
Definition at line 22 of file noiseAnalysis.hpp.
Referenced by noise_variance().
D_VIEW& tuttle::imageUtils::simple_structure_tensor | ( | const S_VIEW & | src, |
D_VIEW & | final_dst, | ||
float | threshold | ||
) |
Apply precise forward/backward finite differences to get a gradient image.
[in] | src | Source view |
[out] | final_dst | Destination view |
Definition at line 32 of file edgeDetect.hpp.
Referenced by tuttle::imageUtils::ImageTensors< View >::anisotropic_gradient().
void tuttle::imageUtils::symmetric_eigen | ( | ViewIt & | tensorXY, |
std::vector< double > & | val, | ||
std::vector< double > & | vec | ||
) |
Compute the eigenvalues and eigenvectors of a symmetric matrix.
[in] | tensorXY | tensor (view iterator) at a certain position |
[out] | val | eigenvalue |
[out] | val | eigenvector |
Definition at line 247 of file edgeDetect.hpp.
Referenced by tuttle::imageUtils::ImageTensors< View >::anisotropic_gradient().
double tuttle::imageUtils::variance_mean | ( | S_VIEW & | src, |
t & | mean | ||
) |
Return the variance and the mean of the image Least Mean of Square.
Definition at line 78 of file noiseAnalysis.hpp.
Referenced by noise_variance().